Peroxisome Proliferator Activated Receptors

Main mechanism of action

Nuclear hormone receptors which upon ligand binding, heterodimerize with the retinoic acid receptors (RXR), translocate to nucleus, and bind to specific PPAR-elements (AGGTCA n AGGTCA) present in gene promoters to activate de novo transcription

Subtypes

Three major subtypes: α , δ , and γ

Functions

"Classic"		"Neuro"
PPARα	Liver cell proliferation	anti-inflammatory
PPARδ	Lipid, cholesterol homeostasis	myelin expression
PPARγ	Adipocyte differentiation	anti-inflammatory anti-proliferative enhanced metabolism

PPAR Agonists Include

- Fibrates (hypolipidemics)
- Several fatty acids, including naturally occurring 15-deoxy-∆12,14-PGJ2
 ***but PGJ2 is also a potent inhibitor of IkB kinase
- NSAIDs (indomethacin, ibuprofen, sulindac?) but at high (mM) doses
 *** these also inhibit COX and modulate Aβ processing
- Hi-affinity, selective tyrosine-based drugs (with EC₅₀=.001 μM)
- Thiazolidinediones (TZDs), insulin-sensitizing drugs
 *** also exert important receptor-independent metabolic effects
 *** Two (pioglitazone "Actos"; rosiglitazone "Avandia" are currently
 FDA-approved for treatment of Type 2 diabetes

Structural Comparison of TZDs

Pioglitazone (Actos)

$$PPAR\gamma EC_{50} = 0.55 \mu M$$

Rosiglitazone (Avandia)
PPAR
$$\gamma$$
 EC₅₀ = 0.076 μ M

NH

Structures of Non-TZD PPARy Agonists

Ibuprofen

15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂

Neurological Indications for PPAR drugs

Alzheimer's disease
Stroke
Parkinson's disease
Multiple Sclerosis
AIDS dementia
Glioma
Sepsis
Remyelination
Complement mediated demyelination

A Role for PPARg in Alzheimer's Disease?

Epidemiological data show NSAIDs reduce the risk and delay the onset of AD Rogers et al. 1993; McGeer 2000

However

Plasma [NSAIDs] are higher than those needed for inhibition of COX2

High [NSAIDs] are PPARγ agonists

In vitro and in vivo, PPARγ agonists prevent neuronal death, while COX2 inhibitors were ineffective or increased death

Combs et al. 2000; Heneka et al. 1999; Klegeris 1999

Two COX2 inhibitors (Nimesulide, Celecoxib), as well as other NSAIDs (diclofenac) were ineffective in AD trials

McGeer 2000

Therefore

The beneficial effects of NSAIDs in AD may be mediated, in part, by PPARg activation