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Affective disorders (ad) and Alzheimer’s disease (AD) have been associated for almost a century, and various
neurophysiologic factors have been implicated as common biologic markers. Yet, links between ad and AD still
await elucidation. We propose that insulin resistance (IR) is one of the missing links between ad and AD. IR with
hyperinsulinemia and subsequent impairment of glucose metabolism especially in ad patients may promote
neurodegeneration and facilitate the onset of AD. According to our hypothesis, IR may persist even into ad
remission in some patients. Persistent regional hypometabolism and vascular changes resulting from long-
standing IR may lead to currently irreversible structural changes. Evidence in support of the hypothesis is
reviewed and clinical implications suggested.

NUMEROUS lines of evidence link affective disorders
(ad) with disorders of cognition (1,2). Cognitive im-

pairment has been found in the euthymic phase (3) as well
as the depressive and manic phases (4,5) of ad.

Depression has been considered a precursor, a prodrome,
and a component of Alzheimer’s disease (AD) (6), the
most prevalent form of cognitive impairment in the Western
world. Thus, it seems reasonable to look for a pathophys-
iological link underlying these disorders.

Insulin resistance (IR), a disturbance in glucose (energy)
metabolism, has been described in both ad (7,8) and AD (9).
Several studies have reported an association between insulin
resistance (IR) and depressive disorders (7,8,10–13), and IR
is a well-known precursor of non-insulin-dependent diabetes
mellitus (NIDDM). Between 9.3 and 9.8 million people in
the United States have diagnosed NIDDM, and another 5.4
million suffer from undiagnosed diabetes (14). The total
estimated prevalence of adult Americans with hypergly-
cemia is 14.7% (15). Insulin resistance is a key component
of NIDDM, and, in most cases, it precedes diabetes.

The pathological mechanisms behind IR remain to be
fully elucidated. Cellular and molecular defects implicated
in IR include dysfunctional insulin receptors, aberrant re-
ceptor signaling pathways, and abnormalities in glucose
transport or glucose metabolism (16). Initially, individuals
with IR maintain normal or near-normal blood glucose
levels, despite a continuing decline in insulin sensitivity. In
time, however, as IR gradually increases, the pancreas is less
able to compensate by increasing insulin secretion (17), and
progressive hyperglycemia develops.

Insulin is necessary for glucose utilization in the peri-
phery and for neuronal survival in the central nervous system
(CNS) (18). In the brain, insulin stimulates glucose uptake
in glial cells (19,20) and increases glucose transporter

(Glut 1) mRNA in both neurons and glia in primary culture
(21). Fluctuating glucose levels as a result of defective
insulin action may lead to apoptosis and formation of neuritic
plaques and neurofibillary tangles (NFT), the true hallmark
lesions of AD, via several interactive mechanisms: 1) by
affecting glucose utilization in insulin-sensitive areas (22);
2) by modulating acetylcholine (ACh) levels in the hippo-
campus; and 3) by decreasing phosphorylation of the micro-
tubule-associated protein tau (known to play a role in NFT
formation) (15).

Since the human brain is almost totally dependent on
a continuous supply of glucose, glucose deprivation (such
as that caused by IR) would be expected to impair brain
function. Impairment in glucose utilization may induce
depression, which may modify behavior, and in turn, in-
fluence quality of glycemic control (22). Recurrent unavail-
ability of glucose to the brain may have long-term sequelae
in the form of treatment-resistant ad and cumulative cognitive
impairment. Insulin infusion has been reported to facilitate
memory in nondiabetic healthy adults (15) and in non-
apolipoprotein E AD patients (23). Effects of insulin on
memory in ad are unknown, but patients with ad, especially
older patients, often manifest cognitive complaints and
impairments (3). The highest concentrations of brain cells
that are receptive to insulin, curiously, are in many of the
structures of the limbic system affected in both ad and AD
(24–26). IR with hyperinsulinemia and subsequent impair-
ment of glucose metabolism especially in ad patients may
promote neurodegeneration and facilitate the onset of AD.

In this article, we will review the literature describing the
role of IR as a potential link between ad and AD.

According to our hypothesis (27) inadequate glucose
utilization resulting from IR may underlie the hypo-
metabolic changes in crucial brain regions observed among
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patients with ad. In those with persistent IR, such changes
may progress to the more permanent changes characteristic
of dementia, especially in individuals with other risk factors
for dementia. We propose the hypothesis as one of the
links between ad and AD, and not the only link. Below
we discuss: 1) evidence supporting the hypothesis; 2) some
limitations of the evidence; and 3) clinical implications of
the postulated relationship between IR, ad, and AD.

EVIDENCE SUPPORTING ROLE OF IR IN AD AND AD

Clinical Evidence
Among patients with bipolar disorder (BPD), prevalence

of NIDDM has been reported to be two to three times that
of the general population (28–31). In turn, ads have been
reported to be more common in persons with diabetes than
in nondiabetic persons (32), and an episode of depression
increases the risk for NIDDM (13). Depression has been
demonstrated to be a major factor in hospital admissions and
death of persons with diabetes mellitus (33). Antidepressant
therapy with serotonin reuptake inhibitors has been reported
to modulate (decrease) IR in both ad (13,34) and NIDDM
patients (12,35).

In turn, growing evidence suggests that a primary disrup-
tion in glucose regulation accompanies AD and contributes
to the severe memory impairment that is a hallmark of
the disorder (36). History of diabetes has been associated
with an overall increased risk of AD but attenuated by age,
gender, duration of exposure to diabetes, and the type of
antidiabetic therapy utilized (37a). NIDDM increases the
risk of AD even after exclusion of cardiovascular risk
factors (37b). These findings are consistent with our
postulate that persistent IR may lead not only to metabolic
but also to vascular changes, further compounding the
deficit in neuronal function.

Neurochemical Evidence
Neurochemical changes underlying both disorders can

modulate and be modulated, in turn, by IR. A brief review
of the role of IR in the pathophysiology of ad and AD
reveals the following:

Both disorders are associated with reduced serotonergic
(5-HT) activity and hyperactivity of the hypothalamo-
pituitary-adrenal (HPA) axis (38–42).—Insulin facilitates
transport of the serotonin precursor, tryptophan, through the
blood–brain barrier (43,44) thereby increasing synthesis of
serotonin. Decreased concentrations of 5-HT and its major
metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been
demonstrated in the CNS of ad and AD patients by use
of postmortem brain studies, particularly in the temporal
cortex (45–52) and in the cerebrospinal fluid (CSF) (53).
The serotonin reuptake inhibitor, fluoxetine, also increases
peripheral sensitivity to insulin, clinically improving NIDDM
(54–56).

The 5HT-IR connection could be mediated by the HPA
axis. Activation of the HPA axis has been associated with
impaired glycemic control and reported in both ad and AD
(57,58). Numerous studies have documented increased HPA

axis activity (e.g., hypercortisolemia) in association with IR
(59), whereas IR may trigger perpetual hypercortisolemia
and vice versa (60). It has been demonstrated that the
hippocampus represents a key area in the regulation of the
HPA axis activity and has a high insulin receptor concen-
tration (61). IR furthers cortisol neurotoxicity in the hippo-
campus (62), which may be the main mechanism by which
changes in endocrine homeostasis affect both mood and
cognition. Alternatively, based on our hypothesis, hypercor-
tisolemia in ad may set the stage for IR, thereby propagating
the metabolic and, possibly, cognitive manifestations of
ad (11,63). This postulate is complementary to the gluco-
corticoid cascade hypothesis of aging (64). According to
that hypothesis, ‘‘advancing age is associated with increas-
ing HPA axis dysregulation, and this dysregulation is the
result of hippocampal atrophy, itself accelerated by HPA
axis hyperactivity.’’

Insulin and glucose effects on memory function may also
be mediated through neurotransmitter systems involved in
memory.—Acetylcholine dysfunction has been implicated in
ad and AD (65). SPECT (single photon emission computed
tomography) and PET (positron-emission tomography) stud-
ies have identified decreased glucose metabolism in the
cholinergic basal forebrain complex, including the limbic
system and hippocampus, the very same areas affected in
both ad (66–68) and AD (69,70). The impairment in glucose
utilization as a result of IR may lead to decreased ACh
synthesis and subsequent memory impairment. Cholinergic
treatments increase regional brain glucose uptake in rodents
(71) and humans (72), and, by increasing brain glucose,
insulin may increase ACh synthesis and release, as well as
increase memory performance (73).

The role of excitatory amino acids (i.e., glutamate) has
been increasingly recognized in ad and AD (74). Glutamate
may mediate glucose and insulin effects on memory per-
formance through its effects on the hippocampus (75). In
turn, insulin may modulate glutamate actions through post-
synaptic activity of NMDA (N-methyl-D-aspartate) recep-
tors (75). Therefore, decreased glucose availability under
conditions of IR may lead to NMDA-receptor hypofunction
with implications for both ad and AD (74).

Vascular-related risk factors associated with IR [such as
coronary artery disease (CAD) and aging, among many
others], provide additional evidence linking IR with ad
and AD (76).—Affective disorders have been shown in
epidemiological studies to increase the risk of developing
CAD and to confer a poorer prognosis once CAD is present
(77). AD is also associated with CAD and atherosclerosis.
Apolipoprotein-E-4 (APOE-4), which is associated with
early development of these diseases, carries a well-estab-
lished risk for late-onset AD (78). In addition, APOE-4
has been associated with lowered parietal, temporal, and
posterior cingulate cerebral glucose metabolism in AD
(79,80). In AD, central and peripheral insulin abnormalities
have been directly related to the severity of dementia as well
as APOE genotype (15). Insulin may affect degradation of
APOE by increasing the low-density lipoprotein receptor-
related protein (LRP)-promoted intake of APOE-enriched

179INSULIN RESISTANCE, AFFECTIVE DISORDERS, AND AD



lipoprotein. LRP in turn degrades the isoform of the amyloid
precursor protein (APP), a major known risk factor for
AD, present in both plasma and the brain (49). Despite the
discrete pathologies involved in each of these risk factors,
they all impair cerebral perfusion (81a). In fact, modula-
tion of lipid profiles through statin use has been reported to
exert a strong protective effect against AD in a large case-
controlled (MIRAGE, Multi-Institutional Research in Alz-
heimer’s Genetic Epidemiology) study. In that study a 79%
reduction in risk of AD was observed after adjustment for
age, gender, education, ethnicity, APOE-4 genotype, and
history of heart disease, stroke, and diabetes (81b).

Insummary, as reviewedabove,variousneurochemical sys-
tems implicated in ad and AD may affect insulin regula-
tion and lead to IR. In turn, IR may be associated with
other factors and processes linking ad and AD. Examples
include aging, impairment in phospholipid metabolism,
and fatty acid-related signal transduction processes (82),
among others. We propose that links are not mutually ex-
clusive, but may represent pieces of the jigsaw puzzle of
neuropsychiatric disorders.

Neuroimaging Evidence
Positron emission tomography with [18F]fluorodeoxyglu-

cose (FDG) determinations of glucose metabolism in both
ad and AD show a consistent pattern of reduced cerebral
glucose utilization in the limbic area [i.e., hippocampus,
cingulate gyrus, and temporal regions (83–86), among
others]. Some of these abnormalities persist in ad in spite of
symptom remission (87–89). Neuroimaging studies consis-
tently describe hypometabolism in ad, with regional
decreases in metabolism being strongly linked to the cog-
nitive impairment of major depressive disorder (90) among
other ‘‘negative symptoms’’ [i.e., psychomotor retardation
and anhedonia]. Regional hypometabolism has been shown
to be reversible only in treatment responders with major
improvement in both negative symptoms and cognitive
functioning (90). In some studies, the hypometabolism was
found to persist in the euthymic phase (91,92), and cognitive
functioning in these patients remained impaired.

Persistent regional hypometabolism in the cingulate
gyrus, recognized for its role in the integration of emotional
behaviors, and one of the areas of earliest change in AD,
was found to differentiate antidepressant treatment respond-
ers from nonresponders (87). According to our hypothesis,
ad responders would be less likely to develop dementia
than ad nonresponders, since nonresponders (and possibly
some responders) may have IR. Compared with ad patients
without IR, such patients are subject to cerebral metabolic
changes over prolonged periods of time, which may lead to
currently irreversible brain changes.

Imaging studies have also reported a variety of ab-
normalities of glucose utilization globally and in the
hippocampus, cingulate gyrus, and selective temporal and
subcortical regions in persons at risk for AD (79,80). Such
patterns have been reported several years prior to the diag-
nosis of dementia (93). The observation that metabolic pat-
terns predict cognitive decline in presymptomatic persons
indicates that the pathophysiologic process begins well
before even mild or questionable dementia is recognized

clinically. The report that depressive episodes preceding the
onset of dementia by 10 years appear to double AD risk
supports this postulate, as do numerous earlier findings (94).

Major disorders of insulin regulation have been asso-
ciated with both ad (95) and AD (48), including diabetes,
obesity, and endocrine and atherosclerotic disease. The
vascular changes resulting from these illnesses may affect
cerebral regions implicated in ad and AD, in addition to
the previously mentioned metabolic changes (85). These
changes have been documented with both H2O PET and
SPECT techniques. Significant regional hypoperfusion in ad
(96) and AD patients (97,98) in the hippocampal/amygda-
loid complex, temporoparietal cortex, and posterior cingu-
late gyrus predicted cognitive decline in persons at risk for
AD, just as the metabolic changes did in the FDG-PET
studies, described earlier (79,80).

SOME LIMITATIONS

Despite the substantial evidence in support of our hypoth-
esis, as presented above, there are some apparent incon-
sistencies and limitations. For example, while AD patients
may exhibit insulin resistance (9,15,23), diabetics are not
known to have an increased frequency of AD despite
fluctuations in blood glucose.

A negative association has been reported between a
genetic risk factor for AD (APOE4) and IR (15). This finding
awaits replication.

Elevated levels of insulin in AD patients (plasma and
CSF) suggest that many AD patients may be insulin resis-
tant. However, insulin levels increase with blood glucose
levels, especially among individuals with IR. Therefore,
elevated blood glucose levels rather than insulin levels
have been postulated to be responsible for improvement
in memory performance (99).

Further research identifying the components of insulin
regulation involved in the pathogenesis of ad and AD is
needed to elucidate the pathophysiologic link between IR
and ad and AD.

CLINICAL IMPLICATIONS OF THE RELATIONSHIP

BETWEEN IR AND AD AND AD
An association of ad with clinically significant weight

gain (100,101) and an increased rate of diabetes (102) may
be an inherent problem in ad patients or may be a side effect
of treatment. Mood stabilizers (103) and antipsychotics,
particularly ‘‘atypical’’ agents, have been reported to in-
crease IR indirectly by promoting significant weight gain
(104) with subsequent increased incidence of hyperglyce-
mia, resulting in IR, glucose intolerance, and diabetes (105).

Early identification of a subgroup of patients with ad and
IR could lead to preventive measures targeting AD, as well
as earlier diagnosis and intervention. Patients with ad have
a greater prevalence of IR and NIDDM (106), especially
individuals with risk factors such as obesity, weight gain
of more than 10% of body mass index with treatment,
family history of diabetes, and hypertension. They could
be evaluated for IR, as well as cognitive performance, at
the beginning of treatment and at intervals thereafter. As
mentioned earlier, improvement in IR has been shown upon
successful antidepressant treatment of ad (12). Addition of
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thiazolidinediones to treatment schedules of ad patients with
IR might also be considered since thiazolidinediones are
the only available antidiabetic drugs that enhance tissue
sensitivity to insulin without causing a subsequent increase
in the secretion of insulin. Currently thiazolidinediones are
already being added for weight reduction to treatment of
some ad patients (107). By preventing hyperinsulinemia,
thiazolidinediones may also protect ad patients against the
development of dementia. Long-term follow-up data will
tell the story. Meanwhile, this approach might also be con-
sidered in the management of other diseases with IR.

CONCLUSION

The proposed hypothesis linking IR and ad and AD
is pertinent for further study of biological components
common to affective illness and AD. It also provides an
important therapeutic target for effective management of ad,
and hopefully, prevention of AD.

Future clinical studies monitoring IR throughout the man-
agement of ad will procure data needed to test the hypothesis.
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