As best I am aware, this is the first set of studies to examine the effects of the same signaling pathway on the two different AD pathologies independently. The fact that we observed completely opposite effects of CX3CR1 deficiency on Aβ and Tau pathologies suggests that therapeutics strategies aimed at this (and related) pathways may have opposing effects depending upon the stage of disease progression and prevalence of the different brain pathologies. Given recent evidence from imaging and biomarker studies that suggest Aβ and Tau pathologies are differentially induced over a 10-20 year period of time, this provides additional impetus for designing therapeutic strategies and clinical trials aimed at specific stages of disease progression.
Comments
Indiana University
As best I am aware, this is the first set of studies to examine the effects of the same signaling pathway on the two different AD pathologies independently. The fact that we observed completely opposite effects of CX3CR1 deficiency on Aβ and Tau pathologies suggests that therapeutics strategies aimed at this (and related) pathways may have opposing effects depending upon the stage of disease progression and prevalence of the different brain pathologies. Given recent evidence from imaging and biomarker studies that suggest Aβ and Tau pathologies are differentially induced over a 10-20 year period of time, this provides additional impetus for designing therapeutic strategies and clinical trials aimed at specific stages of disease progression.
View all comments by Bruce Lamb