Mutations
SORL1 C1344R
Overview
Clinical
Phenotype: Alzheimer's Disease
Position: (GRCh38/hg38):Chr11:121589342 T>C
Position: (GRCh37/hg19):Chr11:121460051 T>C
dbSNP ID: NA
Coding/Non-Coding: Coding
DNA
Change: Substitution
Expected Protein
Consequence: Missense
Codon
Change: TGC to CGC
Reference
Isoform: SORL1 Isoform 1 (2214 aa)
Genomic
Region: Exon 29
Findings
This variant was found in a Swedish Alzheimer’s patient (age of onset 49 years) in pan-European cohort of 1,255 early onset Alzheimer’s disease cases and 1,938 controls from the European Early Onset Dementia Consortium (Verheijen et al., 2016; Thonberg et al., 2017). It is not known whether this carrier had a family history of AD.
No additional carriers were found among 5,198 AD cases and 4,491 controls from the Alzheimer’s Disease Sequencing Project from whom whole-exome sequencing data were available, 1,779 AD cases and 1273 controls from the Alzheimer Disease Exome Sequencing France project, 332 cases and 676 controls of European ancestry from the United Kingdom and North America (Campion et al., 2019), or 640 cases and 1,268 controls from a multi-center Dutch sample (Holstege et al., 2017).
The C1344R variant is classified as “uncertain: possibly pathogenic” by the criteria of Holstege et al. (Holstege et al., 2017) and as of uncertain significance by the American College of Medical Genetics and Genomics guidelines (Thonberg et al., 2017).
Functional Consequences
The SORL1 protein contains 11 complement-type repeats (CRs). A majority of known SORL1 ligands, including APP, bind to the CR cluster. Each CR contains six conserved cysteines. Variants resulting in an odd number of cysteines—either through substitution of one of these six cysteines or mutation of another residue to cysteine—may disrupt disulfide bridging. Based on domain mapping of disease mutations, Andersen and colleagues predicted that variants containing an odd number of cysteines in a CR domain (ONC variants) are highly likely to increase AD risk (Andersen et al., 2023): Approximately 40 percent of variants in LDLR linked to familial hypercholesterolemia are ONC variants, and ONC variants in LRP4 and LRP5 have been linked to Cenani–Lenz syndactyly syndrome and exudative vitreoretinopathy 4, respectively. Indeed, analysis of data from the Alzheimer’s Disease Sequencing Project and the Alzheimer Disease European Sequencing consortium showed that SORL1 ONC variants significantly increased the risk of AD (OR = 6.31 95% CI: 2.45 -16.24, p=5.1x10-6; Fisher Exact test) (Andersen et al., 2023). C1344R is an ONC variant.
The threonine to cysteine substitution was predicted to be probably damaging by PolyPhen-2, damaging by SIFT, and disease-causing by Mutation Taster (Verheijen et al., 2016).
Last Updated: 18 Jul 2024
References
Paper Citations
- Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, Graff C, Thonberg H, Pastor P, Ortega-Cubero S, Pastor MA, Benussi L, Ghidoni R, Binetti G, Clarimon J, Lleó A, Fortea J, de Mendonça A, Martins M, Grau-Rivera O, Gelpi E, Bettens K, Mateiu L, Dillen L, Cras P, De Deyn PP, Van Broeckhoven C, Sleegers K. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathol. 2016 Aug;132(2):213-24. Epub 2016 Mar 30 PubMed.
- Thonberg H, Chiang HH, Lilius L, Forsell C, Lindström AK, Johansson C, Björkström J, Thordardottir S, Sleegers K, Van Broeckhoven C, Rönnbäck A, Graff C. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene. Acta Neuropathol Commun. 2017 Jun 9;5(1):43. PubMed.
- Campion D, Charbonnier C, Nicolas G. SORL1 genetic variants and Alzheimer disease risk: a literature review and meta-analysis of sequencing data. Acta Neuropathol. 2019 Aug;138(2):173-186. Epub 2019 Mar 25 PubMed.
- Holstege H, van der Lee SJ, Hulsman M, Wong TH, van Rooij JG, Weiss M, Louwersheimer E, Wolters FJ, Amin N, Uitterlinden AG, Hofman A, Ikram MA, van Swieten JC, Meijers-Heijboer H, van der Flier WM, Reinders MJ, van Duijn CM, Scheltens P. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer's disease: a clinical interpretation strategy. Eur J Hum Genet. 2017 Aug;25(8):973-981. Epub 2017 May 24 PubMed.
- Andersen OM, Monti G, Jensen AM, deWaal M, Hulsman M, Olsen JG, Holstege H. Relying on the relationship with known disease-causing variants in homologous proteins to predict pathogenicity of SORL1 variants in Alzheimer's disease. 2023 Feb 27 10.1101/2023.02.27.524103 (version 1) bioRxiv.
Further Reading
No Available Further Reading
Protein Diagram
Primary Papers
- Verheijen J, Van den Bossche T, van der Zee J, Engelborghs S, Sanchez-Valle R, Lladó A, Graff C, Thonberg H, Pastor P, Ortega-Cubero S, Pastor MA, Benussi L, Ghidoni R, Binetti G, Clarimon J, Lleó A, Fortea J, de Mendonça A, Martins M, Grau-Rivera O, Gelpi E, Bettens K, Mateiu L, Dillen L, Cras P, De Deyn PP, Van Broeckhoven C, Sleegers K. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathol. 2016 Aug;132(2):213-24. Epub 2016 Mar 30 PubMed.
- Andersen OM, Monti G, Jensen AM, deWaal M, Hulsman M, Olsen JG, Holstege H. Relying on the relationship with known disease-causing variants in homologous proteins to predict pathogenicity of SORL1 variants in Alzheimer's disease. 2023 Feb 27 10.1101/2023.02.27.524103 (version 1) bioRxiv.
Disclaimer: Alzforum does not provide medical advice. The Content is for informational, educational, research and reference purposes only and is not intended to substitute for professional medical advice, diagnosis or treatment. Always seek advice from a qualified physician or health care professional about any medical concern, and do not disregard professional medical advice because of anything you may read on Alzforum.
Comments
No Available Comments
Make a Comment
To make a comment you must login or register.